Abstract:This letter proposes a novel three-tier content caching architecture for Vehicular Fog Caching (VFC)-assisted platoon, where the VFC is formed by the vehicles driving near the platoon. The system strategically coordinates storage across local platoon vehicles, dynamic VFC clusters, and cloud server (CS) to minimize content retrieval latency. To efficiently manage distributed storage, we integrate large language models (LLMs) for real-time and intelligent caching decisions. The proposed approach leverages LLMs' ability to process heterogeneous information, including user profiles, historical data, content characteristics, and dynamic system states. Through a designed prompting framework encoding task objectives and caching constraints, the LLMs formulate caching as a decision-making task, and our hierarchical deterministic caching mapping strategy enables adaptive requests prediction and precise content placement across three tiers without frequent retraining. Simulation results demonstrate the advantages of our proposed caching scheme.
Abstract:Advances in generative models and sequence learning have greatly promoted research in dance motion generation, yet current methods still suffer from coarse semantic control and poor coherence in long sequences. In this work, we present Listen to Rhythm, Choose Movements (LRCM), a multimodal-guided diffusion framework supporting both diverse input modalities and autoregressive dance motion generation. We explore a feature decoupling paradigm for dance datasets and generalize it to the Motorica Dance dataset, separating motion capture data, audio rhythm, and professionally annotated global and local text descriptions. Our diffusion architecture integrates an audio-latent Conformer and a text-latent Cross-Conformer, and incorporates a Motion Temporal Mamba Module (MTMM) to enable smooth, long-duration autoregressive synthesis. Experimental results indicate that LRCM delivers strong performance in both functional capability and quantitative metrics, demonstrating notable potential in multimodal input scenarios and extended sequence generation. We will release the full codebase, dataset, and pretrained models publicly upon acceptance.
Abstract:Large language models (LLMs) are increasingly used in applications requiring factual accuracy, yet their outputs often contain hallucinated responses. While fact-checking can mitigate these errors, existing methods typically retrieve external evidence indiscriminately, overlooking the model's internal knowledge and potentially introducing irrelevant noise. Moreover, current systems lack targeted mechanisms to resolve specific uncertainties in the model's reasoning. Inspired by how humans fact-check, we argue that LLMs should adaptively decide whether to rely on internal knowledge or initiate retrieval based on their confidence in a given claim. We introduce Probabilistic Certainty and Consistency (PCC), a framework that estimates factual confidence by jointly modeling an LLM's probabilistic certainty and reasoning consistency. These confidence signals enable an adaptive verification strategy: the model answers directly when confident, triggers targeted retrieval when uncertain or inconsistent, and escalates to deep search when ambiguity is high. Our confidence-guided routing mechanism ensures that retrieval is invoked only when necessary, improving both efficiency and reliability. Extensive experiments across three challenging benchmarks show that PCC achieves better uncertainty quantification than verbalized confidence and consistently outperforms strong LLM-based fact-checking baselines. Furthermore, we demonstrate that PCC generalizes well across various LLMs.
Abstract:Sparse longitudinal (SL) textual data arises when individuals generate text repeatedly over time (e.g., customer reviews, occasional social media posts, electronic medical records across visits), but the frequency and timing of observations vary across individuals. These complex textual data sets have immense potential to inform future policy and targeted recommendations. However, because SL text data lack dedicated methods and are noisy, heterogeneous, and prone to anomalies, detecting and inferring key patterns is challenging. We introduce LLmFPCA-detect, a flexible framework that pairs LLM-based text embeddings with functional data analysis to detect clusters and infer anomalies in large SL text datasets. First, LLmFPCA-detect embeds each piece of text into an application-specific numeric space using LLM prompts. Sparse multivariate functional principal component analysis (mFPCA) conducted in the numeric space forms the workhorse to recover primary population characteristics, and produces subject-level scores which, together with baseline static covariates, facilitate data segmentation, unsupervised anomaly detection and inference, and enable other downstream tasks. In particular, we leverage LLMs to perform dynamic keyword profiling guided by the data segments and anomalies discovered by LLmFPCA-detect, and we show that cluster-specific functional PC scores from LLmFPCA-detect, used as features in existing pipelines, help boost prediction performance. We support the stability of LLmFPCA-detect with experiments and evaluate it on two different applications using public datasets, Amazon customer-review trajectories, and Wikipedia talk-page comment streams, demonstrating utility across domains and outperforming state-of-the-art baselines.
Abstract:Semantic Communication (SC) combined with Vehicular edge computing (VEC) provides an efficient edge task processing paradigm for Internet of Vehicles (IoV). Focusing on highway scenarios, this paper proposes a Tripartite Cooperative Semantic Communication (TCSC) framework, which enables Vehicle Users (VUs) to perform semantic task offloading via Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. Considering task latency and the number of semantic symbols, the framework constructs a Mixed-Integer Nonlinear Programming (MINLP) problem, which is transformed into two subproblems. First, we innovatively propose a multi-agent proximal policy optimization task offloading optimization method based on parametric distribution noise (MAPPO-PDN) to solve the optimization problem of the number of semantic symbols; second, linear programming (LP) is used to solve offloading ratio. Simulations show that performance of this scheme is superior to that of other algorithms.




Abstract:Vehicle edge caching is a promising technology that can significantly reduce the latency for vehicle users (VUs) to access content by pre-caching user-interested content at edge nodes. It is crucial to accurately predict the content that VUs are interested in without exposing their privacy. Traditional federated learning (FL) can protect user privacy by sharing models rather than raw data. However, the training of FL requires frequent model transmission, which can result in significant communication overhead. Additionally, vehicles may leave the road side unit (RSU) coverage area before training is completed, leading to training failures. To address these issues, in this letter, we propose a federated distillation-assisted vehicle edge caching scheme based on lightweight denoising diffusion probabilistic model (LDPM). The simulation results demonstrate that the proposed vehicle edge caching scheme has good robustness to variations in vehicle speed, significantly reducing communication overhead and improving cache hit percentage.
Abstract:Due to excessive memory overhead, most Multimodal Large Language Models (MLLMs) can only process videos of limited frames. In this paper, we propose an effective and efficient paradigm to remedy this shortcoming, termed One-shot video-Clip based Retrieval AuGmentation (OneClip-RAG). Compared with existing video RAG methods, OneClip-RAG makes full use of the merits of video clips for augmented video understanding in terms of both knowledge integrity and semantic coherence. Besides, it is also equipped with a novel query-guided video chunking algorithm that can unify clip chunking and cross-modal retrieval in one processing step, avoiding redundant computations. To improve instruction following, we further propose a new dataset called SynLongVideo and design a progressive training regime for OneClip-RAG. OneClip-RAG is plugged into five recent MLLMs and validated on a set of long-video benchmarks. Experimental results not only show the obvious performance gains by OneClip-RAG over MLLMs, e.g., boosting InternLV2 8B and Qwen2-VL 7B to the level of GPT-4o on MLVU, but also show its superior efficiency in handling long videos. e.g., enabling LLaVA-Video understand up to an hour of videos in less than 2.2 minutes on a single 4090 GPU.
Abstract:This paper investigates a novel transmissive reconfigurable intelligent surface (TRIS) transceiver-empowered simultaneous wireless information and power transfer (SWIPT) system with multiple information decoding (ID) and energy harvesting (EH) users. Under the considered system model, we formulate an optimization problem that maximizes the sum-rate of all ID users via the design of the TRIS transceiver's active beamforming. The design is constrained by per-antenna power limits at the TRIS transceiver and by the minimum harvested energy demand of all EH users. Due to the non-convexity of the objective function and the energy harvesting constraint, the sum-rate problem is difficult to tackle. To solve this challenging optimization problem, by leveraging the weighted minimum mean squared error (WMMSE) framework and the majorization-minimization (MM) method, we propose a second-order cone programming (SOCP)-based algorithm. Per-element power constraints introduce a large number of constraints, making the problem considerably more difficult. By applying the alternating direction method of multipliers (ADMM) method, we successfully develop an analytical, computationally efficient, and highly parallelizable algorithm to address this challenge. Numerical results are provided to validate the convergence and effectiveness of the proposed algorithms. Furthermore, the low-complexity algorithm significantly reduces computational complexity without performance degradation.




Abstract:A novel transmissive reconfigurable intelligent surface (TRIS) transceiver-empowered simultaneous wireless information and power transfer (SWIPT) framework is proposed. The sum-rate of the information decoding (ID) users is maximized by optimizing the TRIS transceiver's beamforming, subject to the energy harvesting (EH) users' quality-of-harvest and the per-antenna power constraints. To solve this non-convex problem, we develop an efficient optimization algorithm. First, the original problem is reformulated as a semi-definite programming (SDP) problem. The resulting SDP problem is then addressed using successive convex approximation (SCA) combined with a penalty-based method. Numerical results demonstrate the effectiveness of the algorithm.
Abstract:Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they merely predict whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.